Y+y^2=3984

Simple and best practice solution for Y+y^2=3984 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y+y^2=3984 equation:



+Y^2=3984
We move all terms to the left:
+Y^2-(3984)=0
a = 1; b = 0; c = -3984;
Δ = b2-4ac
Δ = 02-4·1·(-3984)
Δ = 15936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15936}=\sqrt{64*249}=\sqrt{64}*\sqrt{249}=8\sqrt{249}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{249}}{2*1}=\frac{0-8\sqrt{249}}{2} =-\frac{8\sqrt{249}}{2} =-4\sqrt{249} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{249}}{2*1}=\frac{0+8\sqrt{249}}{2} =\frac{8\sqrt{249}}{2} =4\sqrt{249} $

See similar equations:

| -45.6=6x | | 2(x+7)=-6(3x-2)+4x | | 2x+2x×(x+5)=4x-12 | | -13=11y+9 | | 12(3+y=5(2y+8) | | 90=4x-6+2x+6 | | 13x=2x+286 | | 2(3x-2)6+12=30+4x | | (11y+-36°=) | | 7w+4w=21 | | -4u+40=2(u-1) | | 4v-8=28 | | 5x=1/2(3x-2) | | 2.3/5=6c | | -c/6+13=10 | | |y+3|=17 | | 4(s-3)=3(2s+6) | | 2y+8-2(-7y-4)=2(y-1) | | 8x+4-8=7x+1 | | 7n-2n=4n-8 | | -6k-9=6-3k | | 5=9-4x13 | | 4x-4x=-22 | | 4x+1.5=3x-3+2+3 | | 3-2(x+1)=5(x+2) | | 3(y+5)-7y=-9 | | 5m-(m-1)=9 | | 10e+50=4 | | (4×+45)+5x=360 | | 3(4g+6)=3 | | 3n2+10n-25=0 | | 5y-2=10y+28 |

Equations solver categories